
Cluster Computing manuscript No.
(will be inserted by the editor)

The Impact of System Design Parameters on Application
Noise Sensitivity

Kurt B. Ferreira · Patrick G. Bridges · Ron Brightwell · Kevin

T. Pedretti

the date of receipt and acceptance should be inserted later

Abstract Operating system (OS) noise, or jitter, is a
key limiter of application scalability in high end com-

puting systems. Several studies have attempted to quan-

tify the sources and effects of system interference, though

few of these studies show the influence that architec-

tural and system characteristics have on the impact
of noise at scale. In this paper, we examine the im-

pact of three such system properties: platform balance,

noisy node distribution, and the choice of collective al-

gorithm. Using a previously-developed noise injection
tool, we explore how the impact of noise varies with

these platform characteristics. We provide detailed per-

formance results that indicate that a system with rel-

atively less network bandwidth is able to absorb more

noise than a system with more network bandwidth. Our
results also show that application performance can be

significantly degraded by only a subset of noisy nodes.

Furthermore, the placement of the noisy nodes is also

important, especially for applications that make sub-
stantial use of tree-based collective communication op-

erations. Lastly, performance results indicate that non-

blocking collective operations have the ability to greatly

mitigate the impact of OS interference. When com-

Sandia is a multiprogram laboratory operated by Sandia Cor-
poration, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL85000.

Kurt B. Ferreira · Ron Brightwell · Kevin T. Pedretti
Scalable System Software Department
Sandia National Laboratories
Albuquerque, NM 87185–1319
E-mail: kbferre,rbbrigh,ktpedre@sandia.gov

Kurt B. Ferreira · Patrick G. Bridges
Computer Science Department
The University of New Mexico
Albuquerque, NM 87131
E-mail: kurt,bridges@cs.unm.edu

bined, these results show that the impact of OS noise is
not solely a property of application communication be-

havior, but is also influenced by other properties of the

system architecture and system software environment.

Keywords Operating Systems Interference; Jitter;

System Balance; Non-blocking Collectives

1 Introduction

Research has shown that operating system (OS) inter-

ference is a key limiter of application performance in

large-scale systems [11,19,7], with much of this work fo-

cusing on how applications respond to different amounts

and types of noise. However, the measured impact of
noise has varied widely between systems, with some

platforms showing relatively little performance impact

from noise [3] and others showing substantial perfor-

mance impacts [11,19,7].

In this paper, we study how a number of impor-

tant architectural and system software design features
as well as application behavior affect the noise sensi-

tivity of high-performance computing (HPC) systems.

In particular, we examine how the following important

system features impact the sensitivity of applications
to OS noise:

– The hardware balance of the system, the ra-

tio of peak network bandwidth (bytes/second) to
peak compute performance (floating point opera-

tions/second)[1,18].

– The isolation of “noisy” nodes running full-featured

operating systems to a subset of the nodes on the
system.

– The use of collective communication mechanisms

that are relatively insensitive to noise.

2 Ferreira et al.

Our results provide important guidance to HPC hard-

ware and system software designers by demonstrating

that:

1. The impact of noise is dependent on machine pa-

rameters - specifically network performance and the

resulting balance of the hardware platform;

2. Isolating noise to only a subset of system nodes is

not sufficient to mitigate the impact of noise at scale
on certain key HPC applications;

3. The placement of noisy nodes in the system mat-

ters, with noisy nodes close to the root of the sys-

tem collective communication tree (rank 0) having
less impact on application performance than nodes

further from rank 0;

4. In a very noisy environment, the choice of optimum

collective algorithm can be different than that in a

low noise environment; and,
5. Non-blocking collective reductions can substantially

mitigate the impact of noise on applications running

in HPC systems.

To our knowledge, this is the first such empirical

study on the impact system design parameters have on

an HPC applications sensitivity to OS noise.

The remainder of the paper is organized as follows.
Section 2 provides background on OS noise, its effect

on application performance in HPC systems, and the

system features listed that we hypothesize affect the

impact of noise on applications in HPC systems. Sec-

tion 3 describes the hardware platform we use to test
the impact of these system features on application noise

sensitivity, how we vary these features on this hardware

platform, and the applications we use to test how varia-

tions in system features impact application noise sensi-
tivity. Section 4 then presents and analyzes the results

of these experiments. Section 5 follows with discussion

of related work in this area, and Sections 7 and 6 present

directions for future work and conclude.

2 Background

2.1 OS Noise

The detrimental side effects of OS interference on mas-

sively parallel processing systems have been known and
studied, primarily qualitatively, for nearly two decades

[23]. Previous investigations have shown that the global

performance cost of noise is, in many cases, due to the

variance in the time for processes to participate in a col-
lective operation, such as MPI Allreduce, resulting in

the accumulation of noise at scale [17]. These interrup-

tions occur for a variety of reasons, from the periodic

timer “tick” commonly used by many commodity oper-

ating systems to keep track of time, to the scheduling

points used to replace the currently running process

with another task or kernel daemon. In each of these

cases, processor cycles are taken away for the duration
of the noise event, which can typically vary from a few

microseconds to a few milliseconds [19,3]. A number of

recent studies [11,19,7] have shown that even relatively

minimal OS noise (e.g. 2.5% OS overhead) can reduce
the performance of applications at scale by orders of

magnitude.

2.2 System Features Affecting Noise

While noise has been recognized as a substantial factor

in application scaling in HPC systems, different plat-
forms have seen dramatic differences in how much im-

pact noise has had on applications, and a number of

techniques have been proposed for mitigating the im-

pact of system noise on applications [15]. For exam-
ple, noise injection studies on two different systems,

the Cray Red Storm system [7] and the IBM BG/L

system [3] measured dramatically different slowdowns

in MPI Allreduce performance in the presence of small

amounts (e.g. 2.5%) of injected noise. Exactly what ac-
counts for the different noise sensitivities of these two

systems is not clear; system differences that could af-

fect noise propagation include the different ratios be-

tween compute and communication of the two systems,
BG/L’s isolation of operating systems with non-trivial

amounts of noise to a subset of its nodes, or the noise-

resistant collectives that BG/L includes in the form of

a hardware collective communication network.

2.2.1 System Balance

System balance, the ratio of peak network bandwidth

(bytes/second) to peak compute performance (floating

point operations/second) [1,18] is one potential system

hardware feature that we hypothesize could alter the
impact of OS noise on application performance. Previ-

ous work has shown that a bytes-to-flops ratio of one

results in the best performance for a typical HPC work-

load [18]. However, given the ever-increasing compute

performance available from multi-core processors and
the inability of network performance to keep pace, well-

balanced machines are becoming increasingly difficult

to design and deploy. Our supposition is that OS noise

is less likely to impact applications on systems that are
less balanced, since OS noise is more likely to be ab-

sorbed in an environment where there are potentially

excess compute cycles available.

The Impact of System Design Parameters 3

2.2.2 OS Noise Isolation

Isolating OS services to a subset of system nodes has

been a popular technique mitigating the impact of nec-
essary OS noise on application performance. The ASCI

Q system, for example, was changed to run most system

services on dedicated processors and dedicated nodes in

response to the well-known study of the impact of noise

on the SAGE application [19]. Similarly, IBM BG-series
systems run a low-noise Compute Node Kernel (CNK)

[16] on most compute nodes and distribute Linux OS

service nodes throughout the system. System calls are

forwarded from CNK-based nodes to these Linux ser-
vice nodes in an effort to isolate OS noise in the system.

Finally, we note that a similar strategy was proposed

for supporting full-featured operating system services

on an Intel Paragon system [12] at Sandia, but was

never deployed in production. Cray has also recently
taken a similar approach to isolating OS services to

specific cores within a node. They refer to this capabil-

ity as “core specialization”. System services are bound

to a small subset of specific cores that do not run appli-
cation processes or threads. Our hypothesis is that this

isolation of OS noise can substantially reduce the im-

pact of noise to applications in the system, but that the

placement of “noisy” nodes in the system also matters.

2.2.3 Noise-resistant Collectives

Finally, since collective communication primitives such

as MPI Allreduce have been shown to be a key factor

in accumulating noise in HPC systems [7,9], a variety of

noise-resistant collective communication primitives has
been proposed as a possible means of mitigating this

effect. A variety of collective communication algorith-

mic and implementation techniques could potentially

impact noise sensitivity, including hardware-based col-
lectives, alternative collective communication patterns,

and non-blocking collectives.

Hardware-based collectives have become increasingly

common, though they have had limited success in re-

ducing noise impact. Hardware-assisted barriers on the

ASCI Q system, for example, had little impact on im-

proving SAGE performance in the presence of noise [19].
The more general hardware-based collectives on IBM

BG series of systems [2], however, are generally re-

garded as an important source of that system’s scal-

ability.

The wide range of available collective communica-

tion algorithms [22] also potentially has different sensi-
tivity to collective communications. Most prior research

on noise sensitivity has focused on tree-based collec-

tive operations, which are frequently used for broad-

casts and reductions in large systems because of their

scalability to large nodes in terms of the number of

messages that must be sent. However, each algorithm’s

sensitivity to noise also impacts its scalability, and, to

our knowledge, this aspect of collective communication
scaling has not been studied.

Finally, non-blocking collectives have been proposed

to the recently reconvened MPI Forum for inclusion in

MPI-3 [8] as another means of reducing the impact of

OS noise on large-scale applications that require col-

lective communication. Similar to non-blocking point-
to-point operations, non-blocking collectives allow an

application to hide the cost of the operation by over-

lapping the network communication with computation.

The key to benefiting from a non-blocking operation is
the size of the overlap portion of the computation. We

hypothesize that the amount of overlap an application

is actually able to achieve between computation and

collective propagation is directly related to the ability
of noise-resistant collective implementations to absorb

noise.

3 Approach

In this section, we provide an overview of the hardware
and software environment of the test system used to

evaluate the impact of the system features described in

Section 2.2 on noise sensitivity. This includes a descrip-

tion of the test platform, the changes to the platform
we have implemented in system software on this plat-

form, the three applications evaluated on this platform,

and the benchmarks we have developed to evaluate the

impact of various collectives algorithms on noise prop-

agation and accumulation.

3.1 Hardware Platform

We used the Red Storm system located at Sandia Na-

tional Laboratories as a test platform. Red Storm is
a Cray XT3/4 series machine consisting of nearly 13

thousand nodes. For our experiments, we used a 3000-

node subset of the machine in dedicated mode. Each

compute node in this subset contains a 2.4 GHz dual-

core AMD Opteron processor and 4 GB of main mem-
ory. Additionally, each node contains a Cray SeaStar [4]

network interface and high-speed router. The SeaStar

is connected to the Opteron via a HyperTransport link.

The current-generation SeaStar is capable of sustain-
ing a peak unidirectional injection bandwidth of more

than 2 GB/s and a peak unidirectional link bandwidth

of more than 3 GB/s. An important characteristic of

4 Ferreira et al.

the SeaStar network on the Cray XT is that it is in-

terrupt driven. When a message arrives at the SeaStar,

it interrupts the host processor, the host OS performs

the necessary protocol processing, and then programs

the SeaStar’s network DMA engines directly to deliver
the incoming message to the appropriate buffer in des-

tination process’ address space. Red Storm is an ideal

platform on which to explore system balance, as it is

one of the more balanced modern-day systems.

3.2 Noise Injection

For our experiments, we modified the system to run the
Catamount lightweight kernel containing our noise in-

jection framework described in [7] instead of the normal

production version, along with additional modifications

allowing us to control which nodes generated noise. The
Catamount lightweight kernel is an ideal environment

for noise studies due to its extremely low native noise

signature and demonstrated record of scalability. All of

our experiments were run using one process per node,

thereby maximizing the overall balance of the system.

For this work, we used noise signatures that rep-
resents 2.5% net processor interference, focusing on a

10 Hz 2500 µs noise profile that is representative of ker-

nel daemon interference. We focused on this 2.5% pro-

file due to both specific measurements made on com-

modity systems and results of previous research that
demonstrated the importance of this noise level [19,

7]. It is important to note that unloaded systems (e.g.

those doing no communication, I/O, or memory man-

agement activities) can have lower noise signatures with
corresponding lower overheads. We believe these un-

loaded noise patterns are not realistic for characteriz-

ing the behavior of real-world HPC applications, and

this view is supported by recent results [17] that show

significant OS overhead from scheduling and ACPI in-
terrupts on loaded HPC Linux systems.

3.3 System Balance Modification

The SeaStar router supports a three-dimensional mesh

topology with an optional torus in some or all dimen-

sions. Each node in the mesh can be connected to one

of its six possible neighbors by a point-to-point link.
These links are configured at system boot time to op-

erate at full speed, but the router supports a degraded

mode that can be used to maintain communication in

the presence of bad or failing connections. It is possible
to manually configure the links to operate in this de-

graded mode at boot time by changing the router man-

ager configuration file. Three degraded modes are sup-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Message Size (bytes)

Full Bandwidth
3/4 Bandwidth
1/2 Bandwidth
1/4 Bandwidth

(a) Bandwidth

 0

 2

 4

 6

 8

 10

 12

 1 10 100 1000

La
te

nc
y

(u
se

c)

Message Size (bytes)

Full Bandwidth
3/4 Bandwidth
1/2 Bandwidth
1/4 Bandwidth

(b) Latency

Fig. 1: MPI ping-pong bandwidth and latency result for de-
graded bandwidths.

ported that result in one-quarter, one-half, and three-
quarters of full bandwidth performance.

To evaluate the impact of system balance on the
noise sensitivity of HPC applications, we modified the

balance of Red Storm using these degraded network

bandwidth modes. We present results of three-quarters,

one-half, and one-quarter bandwidth configurations that

roughly correspond to the balance of the ASC Pur-
ple supercomputer located at Lawrence Livermore Na-

tional Laboratories, a commodity single processor In-

finiBand cluster, and a commodity dual-processor In-

finiBand cluster similar to that of the Thunderbird clus-
ter at Sandia National Laboratories, respectively. Note,

that IBM’s BG/L and BG/P machines are even further

imbalanced towards excess computation than the con-

figurations examined here. See [4] for a balance compar-

ison of several recent large-scale computing systems.

Figure 1 shows the resulting MPI ping-pong band-

width and latency numbers. For bandwidth in Figure 1a,
with message sizes less than 4 KB the bandwidth of

all scenarios are nearly equal due to message overhead,

but for message sizes greater than 4 KB, the bandwidth

The Impact of System Design Parameters 5

curves diverge, with 1 MB messages peaking at around

1900 MB/s, three-quarters bandwidth at slightly more

than 1600 MB/s, one-half bandwidth at 1500 MB/s

and one-quarter bandwidth at just under 800 MB/s.

Figure 1b shows that while the network configuration
de-tuning affects maximum bandwidth, MPI latency of

small messages remains virtually unchanged. Together,

these numbers demonstrate that the hardware mecha-

nism allows for controlling network link bandwidth, and
hence system balance, independent of latency.

3.4 Blocking Collective Algorithms

A great deal of research has been conducted on op-

timizing collective communication primitives for HPC

systems because of their impact on the performance of
many parallel applications. These algorithms vary from

linear implementations, to binomial tress with recur-

sive doubling or halving, to operations on rings [22].

The choice of optimal algorithm is typically dependent

on the size of the collective operation and the number
of nodes performing the operation.

Because blocking collectives operations have been

shown to limit scalability of HPC applications in noisy

environments [19,7], we compare the performance of a

linear and a tree-based MPI Allreduce algorithm with

and without OS noise injection. In the linear algorithm,
all nodes send the data to be reduced to a root node, in

this case rank 0. The root node reduces the data from

each node, and once the reduction is complete sends

the computed result to each node via a point-to-point
operation. In the binomial tree algorithm, nodes are or-

ganized into a logical tree rooted at rank zero. Internal

tree nodes wait for data from each of their children, per-

form the requested reduction and then send their node

to their parent in the tree. Once the root node has com-
puted the final reduction value, it similarly broadcasts

it down the reduction tree.

3.5 Non-blocking Collectives

To test the impact of non-blocking collectives on noise

propagation and accumulation, we implemented a non-
blocking MPI Allreduce collective operation. Again, the

Allreduce operation was chosen due to the sensitivity

of this collective operation shown in [7]. Although there

are a number of non-blocking collective libraries cur-

rently in existence (most notably [8]), we chose to im-
plement our own in order to take full advantage of the

SeaStar interconnect on Red Storm.

Because using non-blocking collectives would require

substantial application changes, we also implemented a

bulk-synchronous micro-benchmark that uses this non-

blocking collective library. This bulk-synchronous micro-

benchmark allows for specifying the length of time of

the compute phase before all nodes join in the Allreduce-

based synchronize step. We set the synchronization step
of the micro-benchmark to occur at a rate previously

measured for the SAGE and POP applications, described

below.

3.6 Test Applications

When appropriate, we used three applications that rep-

resent important HPC modeling and simulation work-

loads, CTH, SAGE, and POP, to evaluate the impact of
hardware and system software changes on noise prop-

agation and accumulation in applications. These ap-

plications represent a range of different computational

techniques, all frequently run at very large scales (i.e.

tens of thousands of nodes), and are key applications
to both the United States Departments of Energy and

Defense. We briefly describe these applications below.

CTH [6] is a multi-material, large deformation,

strong shock wave, solid mechanics code developed by
Sandia with models for multi-phase, elastic viscoplastic,

porous, and explosive materials. CTH supports three-

dimensional rectangular meshes; two-dimensional rect-

angular, and cylindrical meshes; and one-dimensional

rectilinear, cylindrical, and spherical meshes, and uses
second-order accurate numerical methods to reduce dis-

persion and dissipation and to produce accurate, effi-

cient results. It is used for studying armor/anti-armor

interactions, warhead design, high explosive initiation
physics, and weapons safety issues.

SAGE, SAIC’s Adaptive Grid Eulerian hydrocode,

is a multi-dimensional, multi-material, Eulerian hydro-

dynamics code with adaptive mesh refinement that

uses second-order accurate numerical techniques [13].
It represents a large class of production applications

at Los Alamos National Laboratory. It is a large-scale

parallel code written in Fortran 90 and uses MPI for

inter-processor communications. SAGE routinely runs
on thousands of processors for months at a time.

The Parallel Ocean Program (POP) [14] is an

ocean circulation model developed at Los Alamos Na-

tional Laboratory that is capable of ocean simulations

as well as coupled atmosphere, ice, and land climate
simulations. Time integration is split into two parts:

baroclinic and barotropic. In the baroclinic stage, the

three-dimensional vertically-varying tendencies are in-

tegrated using a leapfrog scheme. The baroclinic stage
consists of a preconditioned conjugate gradient solver

which is used to solve for the two-dimensional surface

pressure.

6 Ferreira et al.

4 Experimental Results

4.1 Changing System Balance

To measure the impact that changing system balance

has on system noise sensitivity, we ran each of the three

applications described in the previous section with dif-

ferent available network bandwidths and 2.5% injected
noise ranging from low-frequency/high-duration profiles

(10 Hz/2500 µs) to high-frequency/low-duration pro-

files (1000 Hz/25 µs). We then measured the amount

of excess slowdown that each application experienced
after subtracting out the 2.5% injected noise – that is,

the amount of additional noise that accumulated dur-

ing the application run. Each data point represents the

average of three runs, and we ran each application at

the largest system size that an available data set sup-
ported and for which we were able to get an allocation

– 2500 nodes in the case of POP, 3360 nodes in the case

of SAGE, and 2048 nodes in the case of CTH.

Figure 2 shows how noise accumulates for each of

POP, SAGE, and CTH with varying network band-

width and 2.5% noise profiles. Shifting the balance

of the system in favor of computation by reducing

the amount of network bandwidth available reduces
the performance impact of noise on SAGE and POP,

though POP in particular is still significantly impacted

by low-frequency/high-duration noise similar to that

caused by scheduling a kernel daemon. CTH also ac-
cumulates less noise on an unbalanced system, but be-

cause it accumulates little noise to begin with (approx-

imately 12% in the worst case), this is less significant.

Similarly, Figure 3, shows the impact of scale on the
accumulation of noise for a 10 Hz 2500 µs noise signa-

ture (CTH results not included in the figure due due to

CTH’s very low noise accumulation). This shows that,

independent of scale, the system balance decreases the
impact of OS noise on the these two HPC applications.

The difference between the curves for POP and SAGE

is mainly due to the fact that POP is a strong scaling

application and SAGE is a weak scaling application.

Noise accumulates under varying system balances

for each of these applications because of differences

in the amount of computation and types of commu-

nication they perform. Figure 4 shows breakdowns of

how POP and SAGE divide time between computation
and different communication primitives. POP, for ex-

ample, spends the majority of time at scale in small

MPI Allreduce operations and relatively little time in

computation. As a result, it still incurs substantial slow-
down due to noise accumulation (more than 1000% on

2500 nodes) even when the system balance is tilted

heavily in favor of computation. SAGE, on the other

 0

 200

 400

 600

 800

 1000

 1200

 1400

10Hz 2500us 25Hz 1000us 100Hz 250us 1000Hz 25us

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Noise Pattern

Full Bandwidth
 3/4 Bandwidth
 1/2 Bandwidth
 1/4 Bandwidth

(a) POP (2500 nodes)

-10

 0

 10

 20

 30

 40

 50

 60

10Hz 2500us 25Hz 1000us 100Hz 250us 1000Hz 25us

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Noise Pattern

Full Bandwidth
 3/4 Bandwidth
 1/2 Bandwidth
 1/4 Bandwidth

(b) SAGE (3360 nodes)

-2

 0

 2

 4

 6

 8

 10

 12

 14

10Hz 2500us 25Hz 1000us 100Hz 250us 1000Hz 25us

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Noise Pattern

Full Bandwidth
 3/4 Bandwidth
 1/2 Bandwidth
 1/4 Bandwidth

(c) CTH (2048 nodes)

Fig. 2: Accumulation of noise in application runtime with
varying network bandwidth and different 2.5% net injected
CPU noise profiles.

hand, can leverage an imbalanced system more effec-

tively to reduce noise impact because of its larger com-

putational demands. Finally, while noise has the least
impact on CTH in any case, changes in system balance

do significantly affect its performance, as CTH is net-

work bandwidth limited [18].

The Impact of System Design Parameters 7

 0

 200

 400

 600

 800

 1000

 1200

 1400

1/4 Bandwidth 1/2 Bandwidth 3/4 Bandwidth Full Bandwith

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Link Bandwidth

2500 nodes
1000 nodes

(a) POP

 0

 10

 20

 30

 40

 50

 60

1/4 Bandwidth 1/2 Bandwidth 3/4 Bandwidth Full Bandwith

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Link Bandwidth

3360 nodes
2048 nodes

(b) SAGE

Fig. 3: Impact of node count on accumulation of noise in
application runtime with varying network bandwidth for 10
Hz 2500 µs, 2.5% net injected CPU noise profile.

4.2 Isolating Noise to a Subset of Nodes

To measure the impact of isolating noise-generating ac-
tions onto a subset of system nodes, we varied the per-

centage and location of noise-injecting nodes in the sys-

tem and measured the application noise accumulation.

Nodes injecting noise were generally chosen randomly

using a Fisher-Yates permutation [5] to shuffle the list
of MPI ranks of the job. We then choose the first N ele-

ments of the list as the ranks of noisy nodes. Each data

point in the following graphs corresponds to an average

of at least five data points (maximum of 6) with error
bars shown.

4.2.1 Varying percentage of nodes injecting noise

Figure 5 shows the impact on noise accumulation for

the three applications of isolating noise generation to a
varying percentage of system nodes. In the case of POP,

reducing noise generation to just 5-10% of the system

nodes still results in substantial application slowdown.

 0

 20

 40

 60

 80

 100

10 16 32 64 128 256 512

P
er

ce
nt

 o
f R

un
 T

im
e

Nodes

MPI_Allreduce
MPI_Barrier
MPI_Bcast
MPI_Irecv
MPI_Isend
MPI_Wait
Computation

(a) POP

 0

 20

 40

 60

 80

 100

2 4 8 16 32 64 124 256 512

P
er

ce
nt

 o
f R

un
 T

im
e

Nodes

MPI_Allreduce
MPI_Allgather
MPI_Barrier
MPI_Bcast
MPI_Irecv
MPI_Isend
MPI_Recv
MPI_Send
MPI_Wait
Other Communication
Computation

(b) SAGE

Fig. 4: Breakdown of application runtime between computa-
tion and various communication primitives with full network
bandwidth and no injected noise.

In particular, we note the slowdown for POP is not

related purely to the number of nodes injecting noise;

for example, POP is slowed down by more than 500%

on 2500 nodes when only 250 nodes are injecting noise,

but slows down only nominally when 100% of the nodes

are noisy in the 256-node case.

In contrast, noise isolation appears to be a very suc-
cessful strategy for SAGE (as others have found [19]).

For example, isolating noise to roughly 10% of the sys-

tem nodes reduces noise accumulation in SAGE by a

factor of three on 2048 nodes. Finally, noise isolation ap-
pears to be largely irrelevant to CTH. Also, in contrast

to POP and SAGE, the slowdowns for CTH (though

smaller than POP and SAGE) appear to be relatively

constant, independent of the number of noisy nodes.

4.2.2 Placement of noisy nodes

To study how changing the location of noise injection

affected application performance, we used two different

8 Ferreira et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 256 512 1024 2048 4096

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Nodes

5%
10%
25%
50%
75%

100%

(a) POP

 0

 10

 20

 30

 40

 50

 60

 70

 32 64 128 256 512 1024 2048 4096

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Nodes

5%
10%
25%
50%
75%

100%

(b) SAGE

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 256 512 1024 2048

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Nodes

5%
10%
25%
50%
75%

100%

(c) CTH

Fig. 5: Accumulation of noise in application runtime with
varying percentages of nodes injecting 2.5% net CPU noise.

policies to place 125-128 noisy nodes into a system run:

random and sequential. Random uses the Fisher-Yates

shuffle mentioned above, while sequential places noise-
injection nodes as the first 125–128 nodes in the system

starting at rank zero.

As seen in Figure 6, placement of noisy nodes in the

system can have a substantial effect. Noisy nodes close

to rank 0 result in less noise accumulation. We believe

 0

 50

 100

 150

 200

 250

 300

 64 128 256 512 1024 2048 4096

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Nodes

random
sequential

(a) POP

 0

 5

 10

 15

 20

 25

 128 256 512 1024 2048

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Nodes

random
sequential

(b) SAGE

-2

 0

 2

 4

 6

 8

 10

 12

 128 256 512 1024 2048

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Nodes

random
sequential

(c) CTH

Fig. 6: Accumulation of noise in application runtime with
nodes injecting noise arranged randomly or sequentially
around rank 0. 125 nodes are injecting noise with POP, while
128 nodes are injecting noise with SAGE and CTH.

The Impact of System Design Parameters 9

 0

 50

 100

 150

 200

 250

 300

 350

4 16 64 256 1K 4K 16K 64K 256K 1M

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Size (bytes)

random
sequential

Fig. 7: Slowdown of MPI Allreduce on 128 nodes with 6.25%
of the nodes generating low-frequency, high-duration noise
either distributed randomly throughout the application (ran-
dom) or around and including rank zero (sequential)

this is due to the collective communication primitives

on the Sandia Red Storm system using tree-based algo-

rithms, with the root of the tree at rank 0. As a result,
placement of noisy nodes near the root limits the ac-

cumulation of noise when performing collectives, while

randomly placing noisy nodes, including potentially at

leaves in the collective tree, allows more noise to ac-

cumulate on average. To illustrate this difference, we
use a MPI Allreduce micro-benchmark on 128 nodes

with eight noisy nodes either distributed randomly or

around rank zero. From Figure 7 we see that, at this

scale, random distribution leads to a nearly factor of
two slowdown over the noisy nodes distributed around

rank zero.

4.3 Noise-Resistant Collectives

As described earlier, the different techniques and algo-

rithms for implementing collective communication can

potentially impact noise sensitivity. Here we describe
the results of experiments to quantify the noise sen-

sitivity of two such approaches to realizing collective

communication in parallel systems: linear versus tree-

based collective communication and non-blocking col-

lective primitives.

4.3.1 Linear Versus Tree-based Collectives

To examine the performance of different collective al-

gorithms in noisy environments, we used the two dif-

ferent MPI Allreduce algorithms described previously:

linear and binomial. We tested each algorithm using an
MPI Allreduce micro-benchmark that repeatedly per-

forms MPI Allreduce operations using the MPI SUM op-

erator. We ran this benchmark on node counts ranging

 10

 100

 1000

 10000

 2 4 8 16 32 64 128 256

T
im

e
(u

se
c)

Nodes

linear
binomial

(a) No Injected OS Noise

 10

 100

 1000

 10000

 100000

 2 4 8 16 32 64 128 256

T
im

e
(u

se
c)

Nodes

linear
binomial

(b) 5% Low Frequency / High Duration Noise Signature

Fig. 8: Accumulation of noise in Allreduce micro-benchmark
using a linear or binomial-tree based implementation

from two to 256, and with both no noise and 5% in-

jected low-frequency, high-duration OS noise.

Figure 8 shows the results of these tests, and demon-

strates that the two algorithms have very different be-
havior in noise-free versus noisy environments. As ex-

pected, the binomial-tree based algorithm greatly out-

performs the linear algorithm for node counts greater

than four with no injected noise. With large amounts

of OS noise, however, the linear MPI Allreduce algo-
rithm outperforms the tree-based algorithm for more

than 64 nodes because the linear algorithm can more ef-

fectively absorb noise by performing partial reductions

or handing requests from non-noisy nodes while waiting
for data from nodes delayed due to injected OS noise.

4.3.2 Non-blocking Collectives

To examine the impact of non-blocking collectives on

system noise sensitivity, we studied how increasing the
amount of overlap between application computation and

collective communication affected the noise sensitivity

of the synthetic bulk-synchronous benchmark described

10 Ferreira et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

P
er

ce
nt

 S
lo

w
do

w
n

-
P

er
ce

nt
 In

je
ct

ed

Percent Overlap

Fig. 9: Slowdown of non-blocking Allreduce in bulk-
synchronous micro-benchmark as a function of overlap of
communication with computation

in Section 3.5. We achieved this overlap using the non-
blocking Allreduce collective also described above.

Figure 9 illustrates the slowdown of our non-blocking

micro-benchmark with a low-frequency, high duration

noise signature, similar to that of a periodic kernel

thread or daemon. For this test, we specified the bulk-
synchronous interval to be that of what we measured for

SAGE [7] and the slowdown is in comparison to a run

with no noise. Each data point in the figure corresponds

to an average of ten runs with error bars shown. From
this figure, we see that in a noisy environment with

sufficient overlap, the slowdown due to noise can be re-

duced to nearly zero. In this case in particular, a 2.5%

noise signature could be completely absorbed with 62%

overlap between application computation and collective
communication.

5 Related Work

Though the impact of OS noise on HPC systems has
been studied for more than fifteen years [23], the sem-

inal work of Petrini et al. [19] most recently raised

the visibility of the impact of OS noise on application

performance. This thorough study investigated perfor-
mance issues from OS noise on a large-scale cluster built

from commodity hardware components, running a com-

modity operating system, and running a cluster soft-

ware environment designed for data center applications.

While the findings of this paper from an OS perspective
were largely well known, such as turning off unneces-

sary system daemons, the paper brought to light sev-

eral important new findings relevant to OS noise. The

authors developed a micro-benchmark specifically for
measuring OS noise on a parallel machine; such bench-

marks were previously non-existent. Second, the pa-

per demonstrates the inability of communication micro-

benchmarks to accurately reflect and/or predict appli-

cation performance. Also, the authors offered a conjec-

ture that OS noise is most damaging when the applica-

tion resonates with OS noise. Finally, this work showed

the advantage of dedicating a portion of hardware re-
sources to performing system tasks.

Beckman et al. [3] investigated the effect of user-

level noise on an IBM BG/L system. This system runs

a custom lightweight OS like Catamount that demon-
strates very little noise. This system contains a number

of hardware facilities which allow for collective opera-

tions to be performed in hardware and therefore not

sensitive to CPU noise. In addition, this system has

a balance shifted towards excess computation in com-
parison to other systems like the Cray XT series. In

this paper, the authors showed that a properly config-

ured Linux kernel can have a noise signature similar to

that of a lightweight kernel. Using a user-level injection
mechanism built into the communication library and

a series of micro-benchmarks, the authors showed that

noise levels had to be very high in order to show any

real impact. We believe this difference in noise impact

with other studies is due to the difference in how noise
is injected as well as the architectural differences of the

BG/L system.

Nataraj et al. [17] used the KTAU toolkit to investi-

gate the kernel activities of a general-purpose operating
system. This toolkit instruments the Linux kernel to

collect measurements from various kernel components

including system calls, scheduling, interrupt handling,

and network operations. The authors begin by show-

ing the effectiveness of the KTAU toolkit for measuring
the OS noise in Linux. In addition, they show how their

toolkit can be used to track the accumulation and ab-

sorption of noise during the communication stages of

an application. However, this work, unlike ours, only
presents results from a 128-node development system

that may or may not generalize to a massively parallel

machine containing tens of thousands of nodes. More

importantly, while their tool can be used to identify

possible sources of noise, the authors do not relate the
effects of noise to the performance of a large-scale ap-

plication (e.g. the largest source of noise may not be

the most harmful).

Recently, we examined the sensitivity of OS noise

at scale for three real-world HPC applications using
a kernel-level noise injection framework on a well bal-

anced architecture [7]. In this paper we showed the

importance of how noise is injected and the applica-

tion communication characteristics that impact noise
absorption. For example, we showed how the compu-

tation/communication ratios, collective communication

sizes, and other characteristics of an application, relate

The Impact of System Design Parameters 11

to their ability to amplify or absorb noise. Finally, this

paper discussed the implications of our findings on the

design of new operating systems, middleware, and other

system software laying out how system software tasks

can be constructed as to minimize impact on HPC ap-
plications.

Most recently, Hoefler et al. [9] used a LogGOPS-

based simulator [10] to analyze the influence of OS noise

on HPC applications. The simulator is able to simulate
micro-benchmarks with up to one million ranks and full

applications up to 32 thousand ranks. Using this simu-

lator, the authors were able to reproduce the results of

much of the previous work in OS noise. In addition, this

simulator showed that noise will continue to limit the
scalability of future HPC systems that do not utilize

noise mitigation techniques.

A number of studies have been conducted regard-

ing the implementation and performance of blocking
and non-blocking collective implementations [20,2,22,

24]. Most notably, Hoefler et al. [8] described the im-

plementation of the non-blocking collective library cur-

rently being considered for inclusion in the MPI-3 stan-

dard. In this paper, the authors showed that the perfor-
mance benefit of non-blocking collectives is related to

the ability of the system to overlap the communication

cost of messages with computation of the application.

In addition, this work outlined the importance of intel-
ligent network interfaces like the SeaStar on ensuring

independent network progress for HPC systems.

Finally, Alam and Vetter [1] characterized the sys-

tem balance requirements for GYRO, a Office of Science

fusion simulation code, and the POP climate model-
ing code investigated here. In this work, the authors

measured the parallel efficiencies for these applications

on a number of parallel systems: an SMP cluster, a

shared-memory system, and a vector supercomputer.
This work showed the sensitivity of POP to MPI la-

tency and the bandwidth sensitivity of GYRO. Simi-

larly, Pedretti et al. [18] investigated the sensitivity of

HPC applications to link and injection bandwidth on

the Cray Red Storm machine. Using similar hardware
methods employed in this paper, the authors showed

the sensitivity of CTH and PARTISN to link band-

width and injection bandwidth (the bandwidth of the

point-to-point HyperTransport link connecting a com-
pute node’s Opteron CPU to its SeaStar network inter-

face) degradation.

6 Summary

In this paper, we showed how a number of important

architectural and system software design features affect

the impact of noise on HPC systems. Results indicate

that these system characteristics have a significant im-

pact on the performance of applications at scale.

We used a previously-developed, kernel-based noise

injection utility to explore several important aspects of

OS interference. We showed that the impact of noise
is not solely a property of the communication charac-

teristics of an application. Using a hardware mechanism

to degrade network bandwidth performance, we showed

that the relative peak compute-to-communication ratio
of the system is also important. This particular analysis

helps to explain the disparity in observed results of the

impact of noise on systems with disparate balance char-

acteristics. Our results show that, in general, systems

with excess compute cycles tend to be less sensitive to
noise.

In addition, we explored whether isolating noise to

only a subset of nodes can lessen performance degrada-

tion. We used our noise injection tool to impact only a
subset of compute nodes rather than affecting all nodes

equally. Results showed that it takes a relatively small

percentage of nodes – even as little as 5% – to have a

significant impact on application performance. We also

explored the distribution of the noisy nodes to deter-
mine whether placement makes any difference. Our re-

sults showed that placement of noisy nodes can also

have a substantial impact on application performance.

If noise is generated on nodes whose MPI rank is closer
to rank zero, the impact of noise is much less than if

the noise is generated on a subset of ranks further from

rank zero. We validate our hypothesis that this rank

distribution effect is the result of tree-based collective

operations where the ranks nearest the root are able to
more easily absorb noise, while nodes furthest from the

root are not.

Also, we illustrated the performance of two collec-

tive algorithms in noisy environments We implemented

a linear and binomial-tree based MPI Allreduce col-
lective operation. Our experiments revealed that, while

the tree-based collective algorithm greatly outperforms

the linear algorithm in a low noise environment, in a

very noisy environment, the linear algorithm can absorb
much of the injected noise and therefore outperform the

tree-based implementation.

Finally, we investigated the ability of non-blocking

collective operations to mitigate the impact of OS noise.

We implemented a non-blocking Allreduce operation
and a corresponding overlap benchmark. Combined with

the noise injection utility, we were able to explore the

amount of noise that a non-blocking collective opera-

tion could potentially absorb. Results showed that, for
a typical noise signature, a relatively modest amount

of overlap between computation and communication is

enough to nearly eliminate the impact of noise.

12 Ferreira et al.

Together, these results increase our understanding

of how and why OS noise impacts applications. Deeper

knowledge about the important characteristics of noise-

sensitive applications and key system or architectural

features that can mitigate the negative impact of noise.
This knowledge greatly enhances the ability to design

future-generation platforms, system software, and ap-

plications.

7 Future Work

There are several avenues of future work related to this

study. First, we intend to analyze more applications

in order to increase the understanding of application

sensitivity to noise. While the set of applications in

this study covers a range of important problems and
scalable computational techniques, additional applica-

tion experimentation would further increase the under-

standing of the relationship between OS noise and HPC

hardware and system software design features. Obtain-
ing access to large-scale applications, problem sets, ap-

propriate application scientist expertise, and dedicated

system time to run these applications has proved chal-

lenging, but we believe that this approach is key to un-

derstanding the overall impact of OS noise, especially
as future programming models may require additional

system services with additional system demands.

We are also interested in analyzing how basic OS

services, for example memory management, can influ-

ence the generation and impact of noise. We are ex-
ploring modifications to our noise framework that al-

low Catamount’s memory management strategy to be

more representative of a general-purpose OS like Linux.

Specifically, we are implementing a non-contiguous mem-
ory page allocation scheme that better resembles the

method used by Linux to allocate and manage physical

memory pages. There is evidence to suggest that these

memory management strategies can significantly influ-

ence the scalability of certain HPC applications [21].

Acknowledgements The authors gratefully acknowledge a
number of associates from Sandia National Laboratories for
their assistance in this work. We thank Sue Kelly, Bob Bal-
lance, and the entire Red Storm support staff for their tire-
less support during our dedicated system time. We also wish
to thank Courtenay Vaughan for his help in configuring our
three representative HPC applications. Lastly, we wish to
thank the US Department of Energy’s Office of Advanced
Scientific Computing Research for their financial support of
this work.

References

1. S. R. Alam and J. S. Vetter. An analysis of system bal-
ance requirements for scientific applications. In ICPP ’06:
Proceedings of the 2006 International Conference on Parallel
Processing, pages 229–236, Washington, DC, USA, 2006.
IEEE Computer Society.

2. G. Almási, P. Heidelberger, C. J. Archer, X. Martorell,
C. C. Erway, J. E. Moreira, B. Steinmacher-Burow, and
Y. Zheng. Optimization of MPI collective communica-
tion on BlueGene/L systems. In ICS ’05: Proceedings of
the 19th annual international conference on Supercomput-

ing, pages 253–262, New York, NY, USA, 2005. ACM.
3. P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. The

influence of operating systems on the performance of col-
lective operations at extreme scale. In IEEE Conference
on Cluster Computing, September 2006.

4. R. Brightwell, T. Hudson, K. T. Pedretti, and K. D.
Underwood. SeaStar Interconnect: Balanced bandwidth
for scalable performance. IEEE Micro, 26(3):41–57,
May/June 2006.

5. R. Durstenfeld. Algorithm 235: Random permutation.
Commun. ACM, 7(7):420, 1964.

6. J. E.S. Hertel, R. Bell, M. Elrick, A. Farnsworth, G. Ker-
ley, J. McGlaun, S. Petney, S. Silling, P. Taylor, and
L. Yarrington. CTH: A software family for multi-
dimensional shock physics analysis. In Proceedings of
the 19th International Symposium on Shock Waves, held at
Marseille, France, pages 377–382, July 1993.

7. K. B. Ferreira, R. Brightwell, and P. G. Bridges. Char-
acterizing application sensitivity to OS interference us-
ing kernel-level noise injection. In Proceedings of the 2008
ACM/IEEE Conference on Supercomputing (Supercomput-
ing’08), November 2008.

8. T. Hoefler, A. Lumsdaine, and W. Rehm. Implemen-
tation and performance analysis of non-blocking collec-
tive operations for MPI. In In proceedings of the 2007
International Conference on High Performance Computing,
Networking, Storage and Analysis, SC07. IEEE Computer
Society/ACM, Nov. 2007.

9. T. Hoefler, T. Schneider, and A. Lumsdaine. Character-
izing the influence of system noise on large-scale applica-
tions by simulation. In International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC’10), Nov. 2010.

10. T. Hoefler, T. Schneider, and A. Lumsdaine. Loggop-
sim - simulating large-scale applications in the LogGOPS
model. Jun. 2010. Accepted at the ACM Workshop on
Large-Scale System and Application Performance (LSAP
2010).

11. T. Jones, W. Tuel, L. Brenner, J. Fier, P. Caffrey, S. Daw-
son, R. Neely, R. Blackmore, B. Maskell, P. Tomlinson,
and M. Roberts. Improving the scalability of parallel jobs
by adding parallel awareness to the operating system. In
Proceedings of SC’03, 2003.

12. D. Katramatos, S. J. Chapin, P. Hillman, L. A. Fisk, and
D. van Dresser. Cross-operating system process migra-
tion on a massively parallel processor. Technical Report
CS-98-28, University of Virginia, 1998.

13. D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J.
Wasserman, and M. Gittings. Predictive performance
and scalability modeling of a large-scale application. In
Proceedings of the 2001 ACM/IEEE conference on Super-
computing, pages 37–48, Denver, CO, 2001. ACM Press.

14. D. J. Kerbyson and P. W. Jones. A performance model
of the Parallel Ocean Program. Int. J. High Perform.
Comput. Appl., 19(3):261–276, 2005.

The Impact of System Design Parameters 13

15. P. D. V. Mann and U. Mittaly. Handling OS jitter on
multicore multithreaded systems. In IPDPS ’09: Proceed-
ings of the 2009 IEEE International Symposium on Parallel

& Distributed Processing, pages 1–12, Washington, DC,
USA, 2009. IEEE Computer Society.

16. J. Moreira, M. Brutman, J. Castanos, T. Good-
ing, T. Inglett, D. Lieber, P. McCarthy, M. Mundy,
J. Parker, B. Wallenfelt, M. Giampapa, T. Engelsiepen,
and R. Haskin. Designing a highly-scalable operat-
ing system: The Blue Gene/L story. In Proceedings of
the 2006 ACM/IEEE International Conference for High-
Performance Computing, Networking, Storage, and Analysis
(SC’06), Tampa, Florida, November 2006.

17. A. Nataraj, A. Morris, A. D. Malony, M. Sottile, and
P. Beckman. The ghost in the machine: Observing the
effects of kernel operation on parallel application perfor-
mance. In Proceedings of SC’07, 2007.

18. K. T. Pedretti, C. Vaughan, K. S. Hemmert, and B. Bar-
rett. Application sensitivity to link and injection band-
width on a Cray XT4 system. In Proceedings of the 2008
Cray User Group Annual Technical Conference, May 2008.

19. F. Petrini, D. Kerbyson, and S. Pakin. The case of
the missing supercomputer performance: Achieving op-
timal performance on the 8,192 processors of ASCI Q.
In Proceedings of the International Conference on High-
Performance Computing and Networking, Phoenix, AZ,
2003.

20. J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg,
E. Gabriel, and J. Dongarra. Performance analysis of
MPI collective operations. Cluster Computing, 10(2):127–
143, 2007.

21. B. V. Straalen, J. Shalf, T. Ligocki, N. Keen, and W.-S.
Yan. Scalability challenges for massively parallel AMR
applications. In Proceedings of the International Parallel
and Distributed Processing Symposium, May 2009.

22. R. Thakur, R. Rabenseifner, and W. Gropp. Optimiza-
tion of collective communication operations in MPICH.
International Journal of High Performance Computing Ap-
plications, 19:49–66, 2005.

23. R. Zajcew, P. Roy, D. Black, C. Peak, P. Guedes,
B. Kemp, J. LoVerso, M. Leibensperger, M. Barnett,
F. Rabii, and D. Netterwala. An OSF/1 UNIX for Mas-
sively Parallel Multicomputers. In Proceedings of the
1993 Winter USENIX Technical Conference, pages 449–
468, January 1993.

24. H. Zhu, D. Goodell, W. i. Gropp, and R. Thakur. Hi-
erarchical collectives in MPICH2. In Proceedings of the
16th European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Pass-

ing Interface, pages 325–326, Berlin, Heidelberg, 2009.
Springer-Verlag.

